ORIGINAL PAPER

N-benzoate-N' salicylaldehyde ethynelediamine: A new fluorescent sensor for Zn^{2+} ion by "off-on" mode

Diganta Kumar Das • Priyanka Goswami • Barnita Medhi

Received: 3 September 2013 / Accepted: 27 November 2013 / Published online: 6 December 2013 © Springer Science+Business Media New York 2013

Abstract Imbalance of zinc ion (Zn^{2+}) in human body causes diseases like Alzheimer's and Parkinson's and therefore Zn²⁺ estimation in biological fluids has diagnostic values. Fluorescence "off-on" sensors have advantages of high sensitivity and in situ application over other sensors. A new fluorescent "off-on" Zn²⁺ sensor, N-benzoate-N' salicylaldehyde ethynelediamine (L), has been synthesisied. In 1:1(v/v)CH₃OH:PBS (PBS=phosphate buffer solution), L shows ca. 20 times enhancement in fluorescence intensity on interaction with Zn^{2+} , due to snapping of photoinduced electron transfer (PET) process, which is selective over metal ions - Na^{+} , K^{+} , Ca^{2+} , Ni^{2+} , Cu^{2+} , Cd^{2+} , Hg^{2+} and Pb^{2+} . These metal ions either individually or all together does not interfere the sensing ability of L towards Zn²⁺. A 1:1 interaction between L and Zn^{2+} ion with binding constant $10^{4.25}$ has been established from spectroscopic data.

Keywords Benzoic acid \cdot Ethylenediamine \cdot Salicylaldehyde \cdot Fluorescence \cdot Sensors \cdot Photoinduced electron transfer (PET) \cdot "off-on" fluorescence sensor

Introduction

In recent years, the recognition and sensing of biologically and environmentally important metal ions by fluorescence technique has emerged as a significant goal in the field of chemical sensors [1, 2]. Among the various analytical methods that are available for the detection of cations, the

D. K. Das (🖂) · P. Goswami · B. Medhi

Department of Chemistry, Gauhati University, Guwahati, Assam Pin 781 014, India e-mail: digantakdas@gmail.com techniques based on fluorescence sensors demonstrate substantial advantages in terms of sensitivity, selectivity, low cost, facile operation, response time, local observation and the widespread availability of equipment for analysis [3–5].

Zinc ion (Zn^{2+}) is an important metal ion in biology and its imbalance in human body has been related to a number of diseases like Alzheimer's and Parkinson's [6-13]. For diagnosis of such diseases it is required to estimate Zn^{2+} in biological fluids. Fluorescent sensors have advantages of being cheap and applicable for in situ estimation over other methods. "off-on" type fluorescent sensors have extra advantage of high sensitivity. Photoinduced electron transfer (PET) is one of the prime principle behind fluorescent "off-on" sensors for Zn^{2+} [14–16]. In recent years, a number of fluorescent sensors for Zn^{2+} have been developed [14]. A photo switchable Zn²⁺ selective spiropyran-based sensor was developed by S. Giordani et al. [17]. Chen and co-workers reported a quinoline carboxaldehyde and phenylenediamine based ratiometric fluorescent sensor for Zn²⁺ [18]. P. Banerjee et al. also reported the selective fluorescent zinc sensing property by certain Schiff base compounds [19]. A dual fluorescent sensor based on calyx-4-arene for Zn²⁺ and Ni²⁺ was reported by C.P. Rao etal [20]. We have previously reported fluorescent Zn²⁺ sensors based on N, N, N, Ntetradentate macrocycle [21] and ferrocene derivative [22].

In this paper, we report a new compound (L) Scheme 1, synthesized by a two-step condensation reaction of benzoic acid, ethylenediamine and salicylaldehyde. In 1:1 (v/v) CH₃OH:H₂O, L was found to exhibit a fluorescent peak at λ_{max} value 450 nm on excitation by 350 nm wavelength photons. L can detect Zn²⁺ by fluorescence "on" mode with an enhancement in fluorescence intensity of *ca* 20 times while metal ions Na⁺, K⁺, Ca²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Hg²⁺ and Pb²⁺ do not interfere.

Experimental

Materials and methods

All the chemicals were from Merck except salicylaldehyde and ethylene diamine (Loba Chemie). The metal salts were recrystallized from water (Millipore) before use. Metal salt solutions (10^{-2} M) were prepared in phosphate buffer solutions (PBS) at pH 7.0. Fluorescent spectra were recorded in a Hitachi 2500 spectrophotometer using quartz cuvette (1 cm path length). A 9.0×10^{-4} M solution of L in 1:1 (v/v) CH₃OH: PBS, pH 7.0 was used in the experiments. The excitation wavelength was 350 nm, emission range was 400–600 nm (λ_{max} at 450 nm) and excitation/emission slit was 5 nm.

UV/Visible spectra of L (10^{-4} M in 1:1 (v/v) CH₃OH:PBS) were recorded in a Shimadzu UV 1800 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded in a Bruker Ultrashield 300 spectrometer. All NMR spectra were obtained in CDCl₃ at room temperature and the chemical shifts are reported in δ values (ppm) relative to TMS.

Electrochemical measurements were carried out in a CHI 600B electrochemical analyser, consisting of a three-electrode assembly with a glassy carbon disc as the working electrode, Ag/AgCl (3 M NaCl) as the reference electrode and tetrabutylammonium perchlorate (TBAP, 0.01 M) as the supporting electrolyte. The working electrode was cleaned as reported [23] by polishing with 0.1 μ M alumina slurry using a polishing kit (CHI), followed by sonication in distilled water for 5 min.

Synthesis of L

0.122 g (0.01 mol) of benzoic acid was dissolved in 10 mL of methanol and 0.067 g (0.01 M) of ethylenediamine was added to it. The mixture was refluxed for 1 h and the solvent was evaporated in rota-evaporator. The product, N-benzoateethylenediamine, thus obtained was dried and recrystallized from methanol. 0.164 g (0.01 M) of N-benzoateethylenediamine was taken in 10 mL methanol in a round bottom flask, 0.124 g (0.01 M) of salicylaldehyde was added and refluxed for 20 min. The solid compound (N-banzoate-N' salicylaldehyde ethynelediamine, L) obtained was separated by filtration and dried in a dessicator.

Scheme 1 Structure of L

Fig. 1 The fluorescent spectra of L $(9 \times 10^{-4} \text{ M})$ in 1:1 (v/v) CH₃OH:PBS at Zn²⁺ concentration 0, 3.8, 4.6, 4.9, 5.8, 6.3, 6.9, 7.8, 8.2, 9.1, 9.9, 11.0 and 11.9×10^{-4} M. $(\lambda_{ex}=350 \text{ nm}, \lambda_{emi}=400-600 \text{ nm})$

FTIR (KBr): 3448 cm⁻¹ ($ν_{N-H}$), 1638 cm⁻¹ ($ν_{C=O}$), 2339 cm⁻¹ ($ν_{C=N}$) and 3427 cm⁻¹ ($ν_{N-H}$). ¹HNMR HNMR (CDCl₃,TMS, δ ppm): 3.95 (-CH₂-,

ethylenediamine), 6.86–7.29 (C₆H₅-), 8.36 (–NH). ¹³CNMR (CDCl₃,TMS, δ ppm): 166 (–C=O), 160 (–N=C-), 132–116 (C₆H₅-), 59 & 31 (–NHCH₂CH₂N=).

Results and discussion

The fluorescence spectral changes of L on interaction with metal ions—Na⁺, K⁺, Ca²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺ and Pb²⁺ was investigated in 1:1 (v/v) CH₃OH:PBS. It was observed that on excitation of L by 350 nm wavelength radiation, the emission band was obtained in the range 400–600 nm with the λ_{max} value at 450 nm. However, on addition of different concentration of Zn²⁺ ion (0.99×10⁻⁴ M to 9.0×10⁻⁴ M), it was revealed that the intensity of the fluorescent peak at 450 nm increased remarkably with the increasing concentration of Zn²⁺ ion. The increase in the fluorescence intensity on addition of Zn²⁺ ions at the final added

Fig. 2 Plot of I/Io for L $(9.0 \times 10^{-4} \text{ M}, \text{ in } 1:1 \text{ (v/v) CH}_3\text{OH:PBS})$ versus concentration of Zn^{2+} , where Io is the fluorescent intensity of L at 0 M concentration of Zn^{2+} and I is the fluorescent intensity of L at a particular added concentration of Zn^{2+} (λ_{ex} =350 nm)

Fig. 3 Bar diagram to compare the effect of different metal ions on the I/Io value of L $(9.0 \times 10^{-4} \text{ M}, \lambda_{ex}=350 \text{ nm})$ in 1:1 (v/v) CH₃OH:PBS

concentration was calculated to be approximately 20 times to the original one. Figure 1 depicts the fluorescence spectral changes of L upon addition of different concentration of Zn^{2+} (from 0.99×10^{-4} M to 9.0×10^{-4} M). Figure 2 depicts the plot of I/I_o as a function of Zn^{2+} concentration, where I is the intensity at a given concentration of Zn^{2+} and I_o is the intensity at zero concentration of Zn^{2+} . The I/I_o value increased linearly ($R^2=0.9561$) to 20 till the concentration of Zn^{2+} became 9.0×10^{-4} M and remained constant thereafter.

Similarly, the fluorescence spectral change of L was investigated by carrying out similar titrations with metal ions—Na⁺, K⁺, Ca²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Hg²⁺ and Pb²⁺. The results showed that although a slight increase in the fluorescence intensity up to *ca*. 2.5 times was observed on addition of Ca²⁺, Cd²⁺, Hg²⁺ and Pb²⁺ to L, the other metal ions Na⁺, K⁺, Cu²⁺ and Ni²⁺ quenched the fluorescence signal of L to a remarkable extent. Figure 3 is the bar diagram profile to show the effect of various metal ions, at 9.0×10^{-4} M concentration, on the fluorescent intensity of L. The diagram clearly portrays the sensitivity and selectivity of the sensor compound towards Zn²⁺.

In order to determine the number of Zn^{2+} bound to L and to determine the binding constant, $log[(I_o-I)/(I-I_\alpha)]$ was plotted against $log[Zn^{2+}]$ (Fig. 4) [24, 25]. Here I_o , I and I_α are is the fluorescence intensity of L in absence of Zn^{2+} , in presence of an intermediate concentration of Zn^{2+} and at saturated

Fig. 5 UV/Visible spectra of L in 1:1 (v/v) CH₃OH:PBS at different added concentration of Zn^{2+} . Inset: plot of $log[(A_o-A_s)/(A_s-A_\alpha)]$ versus $log[Zn^{2+}]$ for L in 1:1 (v/v) CH₃OH:PBS. The slope 1.12 indicates 1:1 binding between L and Zn^{2+} (R²=0.996)

concentration of Zn^{2+} , respectively. The plot obtained was linear, with the slope and the X-axis intercept representing the number of Zn^{2+} bound and the log of binding constant (β) respectively. A least squares fitting of data ($R^2=0.971$) yielded the slope to be 1.03, indicating the binding of one Zn^{2+} to **L**. The binding constant (β) was obtained to be $10^{4.25}$.

The UV/Visible spectra of L in 1:1 (v/v) CH₃OH:H₂O at different added concentration of Zn²⁺ has been shown in Fig. 5. In absence of Zn²⁺, L showed peaks at λ_{max} values 220 nm, 255 nm and 320 nm. Interaction with Zn²⁺ shifted the 220 nm peak to 230 nm with a shoulder at 235 nm, the 255 nm peak was shifted to 260 nm with a shoulder at 272 nm, the 320 nm peak significantly shifted to 354 nm with an enhancement in absorbance. In order to confirm the number of Zn²⁺ bound to L, obtained from fluorescence data, log[(A_o-A_s)/(A_s-A_{max})] value was plotted against log[Zn²⁺] for the absorbance values of 354 nm peak (Fig. 4, inset). Here, A_o, A_s and A_{max} are the absorbances of L at zero, at an

Fig. 4 Plot of $\log[(I_o-I_s)/(I_s-I_\alpha)]$ versus $\log[Zn^{2+}]$ for L in 1:1 (v/v) CH₃OH:PBS. The slope 1.03 indicates 1:1 binding between L and Zn^{2+} . (R²=0.971)

Fig. 6 Cyclic voltammogram for L (10^{-4} M) and L in presence of one equivalent of Zn²⁺ in 1:1 (v/v) CH₃OH:PBS. Working electrode GC, Reference electrode Ag/AgCl (3 M NaCl), Supporting electrolyte TBAP, 0.01 M

intermediate and at saturated concentration of Zn^{2+} respectively. The plot was found to be linear ($R^2=0.996$) with slope 1.12 indicating that one Zn^{2+} binds to L and the binding constant (β) value was found to be $10^{4.54}$. These values are in conformity to those obtained from fluorescent intensity calculations.

The significant change in the fluorescent intensity of L on interaction with Zn^{2+} may be explained on the basis of the disruption of the efficient thermodynamically favourable PET mechanism [26] initially prevailing in L. The Zn^{2+} likely binds to L via the two N-atoms of the ethylenediamine moiety. In L the PET process exists due to the transfer of electron density, originating at the lone pairs of electrons on N atoms of the receptor part (ethylenediamine) to the LUMO of the fluorophore part (salicylaldehyde). This results in the quenching of the fluorescence intensity of L. Both fluorescence and UV/Visible spectral titration indicate the binding of one Zn^{2+} to L. Due to the binding of Zn^{2+} to L the energy of the electrons originating at the N atoms are lowered and the PET process is hindered, as a result of which the fluorescence intensity is regenerated. We have already reported a fluorescent sensor for Pb²⁺, having structure similar to L, which is also based on PET [27] Fig. 6.

The Cyclic voltammogram of L (10^{-4} M) was recorded in 1:1 (v/v) CH₃OH:PBS solution using glassy carbon (GC) disc as the working electrode and Ag/AgCl (3 M NaCl) as the reference electrode. An irreversible voltammogram was observed with a reduction peak potential at -0.010 V. Upon additions of different concentration of Zn^{2+} (0.99×10⁻⁴ M to 9.0×10⁻⁴ M) to the electrolytic medium, the reduction peak potential of L was shifted to -0.035 V (Fig. 6). Thus Zn²⁺ interaction results a 0.025 V shift in reduction potential of L towards the negative direction. No change in the cyclic voltammogram of L was observed when similar titrations were carried out with the other metal ions- Na⁺, K⁺, Ca²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Hg^{2+} and Pb^{2+} . From this electrochemical data, the selective interaction between L and Zn^{2+} could be further confirmed.

To summarize, in this paper we have presented a simple and cost effective new fluorescent sensor for Zn^{2+} over Na^+ , K^+ , Ca^{2+} , Ni^{2+} , Cu^{2+} , Cd^{2+} , Hg^{2+} and Pb^{2+} . The fluorescence intensity enhancement is *ca*. 20 fold due to snapping of PET process. This fluorescent intensity enhancement is higher than that reported for many other sensors [28–32]. This sensor also shows electrochemical response towards Zn^{2+} and sensors showing both fluorescent and electrochemical response towards Zn^{2+} are not very common. A 1:1 complex formation between L and Zn^{2+} with binding constant value $10^{4.25}$ is proved.

Acknowledgement Authors thank DST, New Delhi for FIST and UGC, New Delhi for SAP programme to the department. PG thanks UGC for fellowship under RFSMS.

References

- Formica M, Fusi V, Giorgi L, Micheloni M (2012) New chemosensors for metal ions in solution. Coord Chem Rev 256:170
- Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ringopening to sensing ion. Chem Soc Rev 37:1465
- Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution based molecular recognition. Chem Soc Rev 35:14
- Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzymeassembled gold nano particles. J Fluoresc 14:343–354
- Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for Uranyl (UO₂²⁺): Development and comparison of labeled and label-free DNAzyme-gold Nanoparticle systems. J Am Chem Soc 130:14217
- Kaim W, Schwederski B (1994) Bioinorganic chemistry: Inorganic elements in the chemistry of life. An introduction and guide. Wiley, Chichester
- Berg JM, Shi Y (1996) The galvanization of biology: A growing appreciation for the roles of zinc. Science 271:1081–1085
- Czarnik AW (1993) Fluorescent chemosensors for ion and molecule detection. Am Chem Soc, Washington
- Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietery reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101:294–301
- Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169
- Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Bio Metals 14: 315–330
- 12. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4(2): 184–191
- Weiss JH, Sensi SL, Koh JY (2000) Zn²⁺: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401
- Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248(1–2):205–229
- Xue L, Liu C, Jiang H (2009) Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org Lett 11(7):1655–1658
- Henary MM, Wu YG, Fahrni CJ (2004) Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited state intramolecular proton transfer. Chem Eur J 10:3015
- Natali M, Soldi L, Giordani S (2010) A photoswitchable Zn(II) selective spyropyrane-based sensor. Tetrahedron 66:7612–7617
- Chen H, Wu Y, Cheng Y, Yang H, Li F, Yang P, Huang C (2007) A ratiometric fluorescent sensor for zinc(II) with high selectivity. Inorg Chem Commun 10:1413
- Roy P, Dhara K, Manassero M, Banerjee P (2009) Synthesis, characterization and selective fluorescent zinc(II) sensing property of three Schiff-base compounds. Inorg Chim Acta 362:2927–2932
- 20. Joseph R, Ramanujam B, Pal H, Rao CP (2008) Lower rim 1,3-diamide-derivative of calix[4]arene possessing bis-{N-(2,2'dipyridylamide)} pendants: a dual fluorescence sensor for Zn²⁺ and Ni²⁺. Tetrahedron Lett 49:6257
- Goswami P, Das DK (2012) N, N, N, N-tetradentate macrocyclic ligand based selective fluorescent sensor for zinc (II). J Fluoresc 22:1081–1085
- 22. Dutta K, Das DK (2012) 2,7-Diferrocenyl-3,6-diazaocta-2,6diene: A highly selective dual fluorescent sensor for Zn²⁺ and Ag⁺ and electrochemical sensor for Zn²⁺. Indian J Chem Sect A 51A:816–820
- Chandra S, Raizada S, Rani S (2008) Structural and spectral studies of palladium(II) and platinum(II) complexes derived from N, N, N, N-tetradentate macrocyclic ligands. Spectrochim Acta A 71:720–724

- Valeur B (2001) Molecular fluorescence-principles and applications. Wiley-VCH, pp 339–346.
- 25. Nguyen DM, Wang X, H-Yang A, Rodriguez L, Bondar MV, Belfield KD (2010) Novel hydrophilic Bis(1,2,3-triazolyl)fluorenyl probe for in vitro zinc ion sensing. ACS Appl Mater Interfaces 2:2978–2981
- 26. Ashokkumar P, Ramakrishnan VT, Ramamurthy P (2011) Photoinduced electron transfer (PET) Based Zn²⁺ fluorescent probe: Transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile. J Phys Chem A 115:14292– 14299
- Das DK, Goswami P, Sarma S (2013) Salicylaldehyde phenyl hydrazone: A new highly selective lead(II) probe. J Fluoresc 23: 508–503
- Goswami S, Das AK, Aich K, Manna A, Maity S, Khanrab K, Bhattacharyya N (2013) Ratiometric and absolute water-soluble

fluorescent tripodal zinc sensor and its application in killing human lung cancer cells. Analyst 138:4593

- 29. Saha UC, Chattopadhyay B, Dhara K, Mandal SK, Sarkar S, Khuda-Bukhsh AR, Mukherjee M, Helliwell M, Chattopadhyay P (2011) A highly selective fluorescent chemosensor for zinc ion and imaging application in living cells. Inorg Chem 50:1213–1219
- 30. Tang L, Zhao J, Cai M, Zhou P, Zhong K, Hou S, Bian Y (2013) An efficient sensor for relay recognition of Zn²⁺ and Cu²⁺ through fluorescence 'off–on–off' functionality. Tetrahedron Lett 54:6105–6109
- 31. Jia Jia G, Zhen-yuan LR-c, Huang Ming-hao X, Cai-shuang WY-f, Guo-wen X, Yun-sheng H (2011) Design and synthesis of fluorescent sensors for zinc ion derived from 2-aminobenzamide. Eur J Org Chem 4609–4615
- 32. Fan J, Peng X, Wu Y, Lu E, Hou J, Zhang H, Zhang R, Fu X (2005) A new fluorescent sensor for $Zn^{2+}.$ J Lumin 114:125–130